62.39.1 problem Ex 1

Internal problem ID [12953]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter X, System of simulataneous equations. Article 64. Systems of linear equations with constant coefficients. Page 150
Problem number : Ex 1
Date solved : Monday, March 31, 2025 at 07:27:59 AM
CAS classification : system_of_ODEs

\begin{align*} 3 \frac {d}{d t}x \left (t \right )+3 x \left (t \right )+2 y \left (t \right )&={\mathrm e}^{t}\\ 4 x \left (t \right )-3 \frac {d}{d t}y \left (t \right )+3 y \left (t \right )&=3 t \end{align*}

Maple. Time used: 0.183 (sec). Leaf size: 46
ode:=[3*diff(x(t),t)+3*x(t)+2*y(t) = exp(t), 4*x(t)-3*diff(y(t),t)+3*y(t) = 3*t]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= -\frac {{\mathrm e}^{\frac {t}{3}} c_2}{2}-{\mathrm e}^{-\frac {t}{3}} c_1 -6 t \\ y \left (t \right ) &= {\mathrm e}^{\frac {t}{3}} c_2 +{\mathrm e}^{-\frac {t}{3}} c_1 +9 t +9+\frac {{\mathrm e}^{t}}{2} \\ \end{align*}
Mathematica. Time used: 1.071 (sec). Leaf size: 337
ode={3*D[x[t],t]+3*x[t]+2*y[t]==Exp[t],4*x[t]-3*D[y[t],t]+3*y[t]==3*t}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to e^{-t/3} \left (-\left (e^{2 t/3}-2\right ) \int _1^t\frac {1}{3} e^{-\frac {K[1]}{3}} \left (-3 e^{\frac {2 K[1]}{3}} K[1]+3 K[1]-e^{K[1]}+2 e^{\frac {5 K[1]}{3}}\right )dK[1]-\left (e^{2 t/3}-1\right ) \int _1^t\frac {1}{3} e^{-\frac {K[2]}{3}} \left (3 e^{\frac {2 K[2]}{3}} K[2]-6 K[2]+2 e^{K[2]}-2 e^{\frac {5 K[2]}{3}}\right )dK[2]+c_1 \left (-e^{2 t/3}\right )-c_2 e^{2 t/3}+2 c_1+c_2\right ) \\ y(t)\to e^{-t/3} \left (2 \left (e^{2 t/3}-1\right ) \int _1^t\frac {1}{3} e^{-\frac {K[1]}{3}} \left (-3 e^{\frac {2 K[1]}{3}} K[1]+3 K[1]-e^{K[1]}+2 e^{\frac {5 K[1]}{3}}\right )dK[1]+\left (2 e^{2 t/3}-1\right ) \int _1^t\frac {1}{3} e^{-\frac {K[2]}{3}} \left (3 e^{\frac {2 K[2]}{3}} K[2]-6 K[2]+2 e^{K[2]}-2 e^{\frac {5 K[2]}{3}}\right )dK[2]+2 c_1 e^{2 t/3}+2 c_2 e^{2 t/3}-2 c_1-c_2\right ) \\ \end{align*}
Sympy. Time used: 0.227 (sec). Leaf size: 48
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(3*x(t) + 2*y(t) - exp(t) + 3*Derivative(x(t), t),0),Eq(-3*t + 4*x(t) + 3*y(t) - 3*Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{- \frac {t}{3}} - \frac {C_{2} e^{\frac {t}{3}}}{2} - 6 t, \ y{\left (t \right )} = C_{1} e^{- \frac {t}{3}} + C_{2} e^{\frac {t}{3}} + 9 t + \frac {e^{t}}{2} + 9\right ] \]