Internal
problem
ID
[12935]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IX,
Miscellaneous
methods
for
solving
equations
of
higher
order
than
first.
Article
60.
Exact
equation.
Integrating
factor.
Page
139
Problem
number
:
Ex
8
Date
solved
:
Monday, March 31, 2025 at 07:27:27 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)-5*x*diff(diff(y(x),x),x)+(4*x^4+5)*diff(y(x),x)-8*x^3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,3}]-5*x*D[y[x],{x,2}]+(4*x^4+5)*D[y[x],x]-8*x^3*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**3*y(x) + x**2*Derivative(y(x), (x, 3)) - 5*x*Derivative(y(x), (x, 2)) + (4*x**4 + 5)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(8*x**2*y(x) - x*Derivative(y(x), (x, 3)) + 5*Derivative(y(x), (x, 2)))/(4*x**4 + 5) + Derivative(y(x), x) cannot be solved by the factorable group method