62.36.1 problem Ex 1

Internal problem ID [12928]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139
Problem number : Ex 1
Date solved : Monday, March 31, 2025 at 07:24:51 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} \left (x +2\right )^{2} y^{\prime \prime \prime }+\left (x +2\right ) y^{\prime \prime }+y^{\prime }&=1 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 35
ode:=(x+2)^2*diff(diff(diff(y(x),x),x),x)+(x+2)*diff(diff(y(x),x),x)+diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (c_1 -c_2 \right ) \left (x +2\right ) \cos \left (\ln \left (x +2\right )\right )}{2}+\frac {\left (c_1 +c_2 \right ) \left (x +2\right ) \sin \left (\ln \left (x +2\right )\right )}{2}+x +c_3 \]
Mathematica. Time used: 60.028 (sec). Leaf size: 35
ode=(x+2)^2*D[y[x],{x,3}]+(x+2)*D[y[x],{x,2}]+D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \int _1^x(c_1 \cos (\log (K[1]+2))+c_2 \sin (\log (K[1]+2))+1)dK[1]+c_3 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x + 2)**2*Derivative(y(x), (x, 3)) + (x + 2)*Derivative(y(x), (x, 2)) + Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE x**2*Derivative(y(x), (x, 3)) + x*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), (x, 3)) + Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), (x, 3)) - 1 cannot be solved by the factorable group method