62.32.3 problem Ex 3

Internal problem ID [12909]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number : Ex 3
Date solved : Monday, March 31, 2025 at 07:24:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2\right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+(-x^2+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \sinh \left (x \right )+c_2 \cosh \left (x \right )}{x^{2}} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 28
ode=x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(2-x^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 c_1 e^{-x}+c_2 e^x}{2 x^2} \]
Sympy. Time used: 0.218 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + (2 - x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} J_{\frac {1}{2}}\left (i x\right ) + C_{2} Y_{\frac {1}{2}}\left (i x\right )}{x^{\frac {3}{2}}} \]