Internal
problem
ID
[12896]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
VIII,
Linear
differential
equations
of
the
second
order.
Article
53.
Change
of
dependent
variable.
Page
125
Problem
number
:
Ex
3
Date
solved
:
Monday, March 31, 2025 at 07:23:52 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2+1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1+x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False