Internal
problem
ID
[12869]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
VII,
Linear
differential
equations
with
constant
coefficients.
Article
50.
Method
of
undetermined
coefficients.
Page
107
Problem
number
:
Ex
2
Date
solved
:
Monday, March 31, 2025 at 07:23:09 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 2*x*exp(2*x)-sin(x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==2*x*Exp[2*x]-Sin[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*exp(2*x) + y(x) + sin(x)**2 - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)