Internal
problem
ID
[12843]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
V,
Singular
solutions.
Article
32.
Page
69
Problem
number
:
Ex
5
Date
solved
:
Monday, March 31, 2025 at 07:21:25 AM
CAS
classification
:
[[_homogeneous, `class G`], _Clairaut]
ode:=x^2*diff(y(x),x)^2-2*(x*y(x)-2)*diff(y(x),x)+y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(D[y[x],x])^2-2*(x*y[x]-2)*D[y[x],x]+y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**2 - (2*x*y(x) - 4)*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)