Internal
problem
ID
[12821]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
27.
Clairaut
equation.
Page
56
Problem
number
:
Ex
1
Date
solved
:
Monday, March 31, 2025 at 07:11:43 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
ode:=(-y(x)+x*diff(y(x),x))^2 = 1+diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x]*x-y[x])^2==(D[y[x],x])^2+1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x*Derivative(y(x), x) - y(x))**2 - Derivative(y(x), x)**2 - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out