Internal
problem
ID
[12817]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
26.
Equations
solvable
for
\(x\).
Page
55
Problem
number
:
Ex
1
Date
solved
:
Monday, March 31, 2025 at 07:11:20 AM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x+diff(y(x),x)*y(x)*(2*diff(y(x),x)^2+3) = 0; dsolve(ode,y(x), singsol=all);
ode=x+D[y[x],x]*y[x]*(2*(D[y[x],x])^2+3)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x + (2*Derivative(y(x), x)**2 + 3)*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out