62.7.3 problem Ex 3

Internal problem ID [12755]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21
Problem number : Ex 3
Date solved : Monday, March 31, 2025 at 07:02:11 AM
CAS classification : [_separable]

\begin{align*} \sin \left (y\right ) y^{\prime }+\sin \left (x \right ) \cos \left (y\right )&=\sin \left (x \right ) \end{align*}

Maple. Time used: 0.040 (sec). Leaf size: 14
ode:=sin(y(x))*diff(y(x),x)+sin(x)*cos(y(x)) = sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \arccos \left ({\mathrm e}^{-\cos \left (x \right )} c_1 +1\right ) \]
Mathematica. Time used: 0.698 (sec). Leaf size: 121
ode=Sin[y[x]]*D[y[x],x]+Sin[x]*Cos[y[x]]==Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to 0 \\ \text {Solve}\left [\int _1^x-e^{\text {arctanh}(\cos (y(x)))} \left (\cos \left (K[1]-\frac {y(x)}{2}\right )-\cos \left (K[1]+\frac {y(x)}{2}\right )\right ) \sec \left (\frac {y(x)}{2}\right )dK[1]-y(x) \int _1^x0dK[1]+\sqrt {\sin ^2(y(x))} \left (-\csc \left (\frac {y(x)}{2}\right )\right ) \sec \left (\frac {y(x)}{2}\right ) \left (\log \left (\sec ^2\left (\frac {y(x)}{2}\right )\right )-2 \log \left (\tan \left (\frac {y(x)}{2}\right )\right )\right )&=c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.840 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sin(x)*cos(y(x)) - sin(x) + sin(y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \operatorname {acos}{\left (C_{1} e^{- \cos {\left (x \right )}} + 1 \right )} + 2 \pi , \ y{\left (x \right )} = \operatorname {acos}{\left (C_{1} e^{- \cos {\left (x \right )}} + 1 \right )}\right ] \]