Internal
problem
ID
[12723]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
38
Date
solved
:
Monday, March 31, 2025 at 06:52:35 AM
CAS
classification
:
ode:=(exp(2*lambda*x)*a^2+b)*diff(diff(y(x),x),x)-b*lambda*diff(y(x),x)-a^2*lambda^2*k^2*exp(2*lambda*x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a^2*Exp[2*\[Lambda]*x]+b)*D[y[x],{x,2}]-b*\[Lambda]*D[y[x],x]-a^2*\[Lambda]^2*k^2*Exp[2*\[Lambda]*x]*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") k = symbols("k") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(-a**2*k**2*lambda_**2*y(x)*exp(2*lambda_*x) - b*lambda_*Derivative(y(x), x) + (a**2*exp(2*lambda_*x) + b)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False