Internal
problem
ID
[12718]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
33
Date
solved
:
Monday, March 31, 2025 at 06:52:24 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(exp(lambda*x)*a+b*exp(x*mu)+c)*diff(y(x),x)+(a*b*exp(x*(lambda+mu))+exp(lambda*x)*a*c+b*mu*exp(x*mu))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(a*Exp[\[Lambda]*x]+b*Exp[\[Mu]*x]+c)*D[y[x],x]+(a*b*Exp[(\[Lambda]+\[Mu])*x]+a*c*Exp[\[Lambda]*x]+b*\[Mu]*Exp[\[Mu]*x])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq((a*exp(lambda_*x) + b*exp(mu*x) + c)*Derivative(y(x), x) + (a*b*exp(x*(lambda_ + mu)) + a*c*exp(lambda_*x) + b*mu*exp(mu*x))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False