61.34.8 problem 8

Internal problem ID [12693]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number : 8
Date solved : Monday, March 31, 2025 at 06:51:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 a x} y&=0 \end{align*}

Maple. Time used: 0.050 (sec). Leaf size: 39
ode:=diff(diff(y(x),x),x)+a*diff(y(x),x)+b*exp(2*a*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-a x} \left (c_1 \sin \left (\frac {\sqrt {b}\, {\mathrm e}^{a x}}{a}\right )+c_2 \cos \left (\frac {\sqrt {b}\, {\mathrm e}^{a x}}{a}\right )\right ) \]
Mathematica. Time used: 0.087 (sec). Leaf size: 78
ode=D[y[x],{x,2}]+a*D[y[x],x]+b*Exp[2*a*x]*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\sqrt {a} e^{-\frac {a x}{2}} \left (2 c_1 \cos \left (\frac {\sqrt {b e^{2 a x}}}{a}\right )+c_2 \sin \left (\frac {\sqrt {b e^{2 a x}}}{a}\right )\right )}{\sqrt {2} \sqrt [4]{b e^{2 a x}}} \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x) + b*y(x)*exp(2*a*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False