Internal
problem
ID
[12683]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-8.
Other
equations.
Problem
number
:
262
Date
solved
:
Monday, March 31, 2025 at 06:51:09 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*x^n+b*x^m+c)*diff(diff(y(x),x),x)+(lambda^2-x^2)*diff(y(x),x)+(x+lambda)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^n+b*x^m+c)*D[y[x],{x,2}]+(\[Lambda]^2-x^2)*D[y[x],x]+(x+\[Lambda])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq((lambda_ + x)*y(x) + (lambda_**2 - x**2)*Derivative(y(x), x) + (a*x**n + b*x**m + c)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Symbol object cannot be interpreted as an integer