61.33.19 problem 257

Internal problem ID [12678]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number : 257
Date solved : Monday, March 31, 2025 at 06:50:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{n -2} \left (b \,x^{m +1}+a n -a \right ) y&=0 \end{align*}

Maple
ode:=(x^n+a)^2*diff(diff(y(x),x),x)+b*x^m*(x^n+a)*diff(y(x),x)-x^(n-2)*(b*x^(1+m)+a*n-a)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=(x^n+a)^2*D[y[x],{x,2}]+b*x^m*(x^n+a)*D[y[x],x]-x^(n-2)*(b*x^(m+1)+a*n-a)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
m = symbols("m") 
n = symbols("n") 
y = Function("y") 
ode = Eq(b*x**m*(a + x**n)*Derivative(y(x), x) - x**(n - 2)*(a*n - a + b*x**(m + 1))*y(x) + (a + x**n)**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : Add object cannot be interpreted as an integer