61.32.20 problem 229

Internal problem ID [12651]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-7
Problem number : 229
Date solved : Monday, March 31, 2025 at 06:49:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) \left (c \,x^{2}+d \right ) y^{\prime }+2 \left (-a d +b c \right ) x y&=0 \end{align*}

Maple. Time used: 0.206 (sec). Leaf size: 817
ode:=(a*x^2+b)^2*diff(diff(y(x),x),x)+(a*x^2+b)*(c*x^2+d)*diff(y(x),x)+2*(-a*d+b*c)*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.401 (sec). Leaf size: 116
ode=(a*x^2+b)^2*D[y[x],{x,2}]+(a*x^2+b)*(c*x^2+d)*D[y[x],x]+2*(b*c-a*d)*x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \exp \left (\int _1^x-\frac {c K[1]^2+d}{a K[1]^2+b}dK[1]\right ) \left (\int _1^x\exp \left (-\int _1^{K[2]}-\frac {c K[1]^2+d}{a K[1]^2+b}dK[1]\right ) c_1dK[2]+c_2\right ) \\ y(x)\to c_2 \exp \left (\int _1^x-\frac {c K[1]^2+d}{a K[1]^2+b}dK[1]\right ) \\ \end{align*}
Sympy. Time used: 1.573 (sec). Leaf size: 3
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
y = Function("y") 
ode = Eq(x*(-2*a*d + 2*b*c)*y(x) + (a*x**2 + b)**2*Derivative(y(x), (x, 2)) + (a*x**2 + b)*(c*x**2 + d)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = O\left (1\right ) \]