Internal
problem
ID
[12627]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
206
Date
solved
:
Monday, March 31, 2025 at 06:12:36 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=2*(a*x^3+b*x^2+c*x+d)*diff(diff(y(x),x),x)+(3*a*x^2+2*b*x+c)*diff(y(x),x)+lambda*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*(a*x^3+b*x^2+c*x+d)*D[y[x],{x,2}]+(3*a*x^2+2*b*x+c)*D[y[x],x]+lambda*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(lambda_*y(x) + (3*a*x**2 + 2*b*x + c)*Derivative(y(x), x) + (2*a*x**3 + 2*b*x**2 + 2*c*x + 2*d)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False