61.27.43 problem 53

Internal problem ID [12474]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-2
Problem number : 53
Date solved : Monday, March 31, 2025 at 05:35:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y&=0 \end{align*}

Maple
ode:=diff(diff(y(x),x),x)+(a*b*x^n+2*b*x^(n-1)-a^2*x)*diff(y(x),x)+a*(a*b*x^n+b*x^(n-1)-a^2*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],{x,2}]+(a*b*x^n+2*b*x^(n-1)-a^2*x)*D[y[x],x]+a*(a*b*x^n+b*x^(n-1)-a^2*x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a*(-a**2*x + a*b*x**n + b*x**(n - 1))*y(x) + (-a**2*x + a*b*x**n + 2*b*x**(n - 1))*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : Add object cannot be interpreted as an integer