61.27.25 problem 35

Internal problem ID [12456]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-2
Problem number : 35
Date solved : Monday, March 31, 2025 at 05:35:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 79
ode:=diff(diff(y(x),x),x)+(a*x^2+2*b)*diff(y(x),x)+(a*b*x^2-a*x+b^2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-\frac {x \left (a \,x^{2}+6 b \right )}{6}} \left (c_2 \,a^{2} x^{3} \operatorname {WhittakerM}\left (\frac {1}{3}, \frac {5}{6}, \frac {a \,x^{3}}{3}\right )+\frac {5 \left (a \,x^{3}\right )^{{1}/{3}} c_2 3^{{2}/{3}} a \left (a \,x^{3}+2\right ) {\mathrm e}^{-\frac {a \,x^{3}}{6}}}{9}+c_1 \,x^{2} {\mathrm e}^{\frac {a \,x^{3}}{6}}\right )}{x} \]
Mathematica. Time used: 0.363 (sec). Leaf size: 50
ode=D[y[x],{x,2}]+(a*x^2+2*b)*D[y[x],x]+(a*b*x^2-a*x+b^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x e^{-b x} \left (c_2 \int _1^x\exp \left (\int _1^{K[2]}-\frac {a K[1]^3+2}{K[1]}dK[1]\right )dK[2]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq((a*x**2 + 2*b)*Derivative(y(x), x) + (a*b*x**2 - a*x + b**2)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False