61.27.7 problem 17

Internal problem ID [12438]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-2
Problem number : 17
Date solved : Monday, March 31, 2025 at 05:34:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y&=0 \end{align*}

Maple. Time used: 0.126 (sec). Leaf size: 51
ode:=diff(diff(y(x),x),x)+a*diff(y(x),x)+b*(-b*x^(2*n)-a*x^n+n*x^(n-1))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {\left (b \,x^{n}+a \left (n +1\right )\right ) x}{n +1}} \left (c_2 \int {\mathrm e}^{\frac {x \left (2 b \,x^{n}+a \left (n +1\right )\right )}{n +1}}d x +c_1 \right ) \]
Mathematica
ode=D[y[x],{x,2}]+a*D[y[x],x]+b*(-b*x^(2*n)-a*x^n+n*x^(n-1))*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x) + b*(-a*x**n - b*x**(2*n) + n*x**(n - 1))*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : Mul object cannot be interpreted as an integer