Internal
problem
ID
[12429]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2
Equations
Containing
Power
Functions.
page
213
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 05:34:11 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-a*(a*x^(2*n)+n*x^(n-1))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-a*(a*x^(2*n)+n*x^(n-1))*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(-a*(a*x**(2*n) + n*x**(n - 1))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Mul object cannot be interpreted as an integer