61.26.2 problem 2

Internal problem ID [12423]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number : 2
Date solved : Monday, March 31, 2025 at 05:34:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-\left (a x +b \right ) y&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 33
ode:=diff(diff(y(x),x),x)-(a*x+b)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {AiryAi}\left (\frac {a x +b}{\left (-a \right )^{{2}/{3}}}\right )+c_2 \operatorname {AiryBi}\left (\frac {a x +b}{\left (-a \right )^{{2}/{3}}}\right ) \]
Mathematica. Time used: 0.019 (sec). Leaf size: 36
ode=D[y[x],{x,2}]-(a*x+b)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {AiryAi}\left (\frac {b+a x}{a^{2/3}}\right )+c_2 \operatorname {AiryBi}\left (\frac {b+a x}{a^{2/3}}\right ) \]
Sympy. Time used: 0.087 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-(a*x + b)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} Ai\left (\sqrt [3]{a} x + \frac {b}{a^{\frac {2}{3}}}\right ) + C_{2} Bi\left (\sqrt [3]{a} x + \frac {b}{a^{\frac {2}{3}}}\right ) \]