61.24.71 problem 71

Internal problem ID [12405]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 71
Date solved : Monday, March 31, 2025 at 05:31:37 AM
CAS classification : [[_Abel, `2nd type`, `class A`]]

\begin{align*} y y^{\prime }&={\mathrm e}^{a x} \left (2 a \,x^{2}+b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right ) \end{align*}

Maple
ode:=y(x)*diff(y(x),x) = exp(a*x)*(2*a*x^2+b+2*x)*y(x)+exp(2*a*x)*(-a*x^4-b*x^2+c); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]==Exp[a*x]*(2*a*x^2+2*x+b)*y[x]+Exp[2*a*x]*(-a*x^4-b*x^2+c); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq((-2*a*x**2 - b - 2*x)*y(x)*exp(a*x) - (-a*x**4 - b*x**2 + c)*exp(2*a*x) + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out