Internal
problem
ID
[12402]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.3-2.
Problem
number
:
68
Date
solved
:
Monday, March 31, 2025 at 05:30:07 AM
CAS
classification
:
[[_Abel, `2nd type`, `class A`]]
ode:=y(x)*diff(y(x),x) = (a*(lambda+2*mu)*exp(lambda*x)+b)*exp(x*mu)*y(x)+(-a^2*mu*exp(2*lambda*x)-a*b*exp(lambda*x)+c)*exp(2*x*mu); dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],x]==(a*(2*\[Mu]+\[Lambda])*Exp[\[Lambda]*x]+b)*Exp[\[Mu]*x]*y[x]+(-a^2*\[Mu]*Exp[2*\[Lambda]*x]-a*b*Exp[\[Lambda]*x]+c)*Exp[2*\[Mu]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq((-a*(lambda_ + 2*mu)*exp(lambda_*x) - b)*y(x)*exp(mu*x) - (-a**2*mu*exp(2*lambda_*x) - a*b*exp(lambda_*x) + c)*exp(2*mu*x) + y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out