61.24.64 problem 64

Internal problem ID [12398]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 64
Date solved : Monday, March 31, 2025 at 05:29:31 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y y^{\prime }-\frac {a \left (\frac {\left (n +4\right ) x}{n +2}-2\right ) x^{-\frac {2 n +1}{n}} y}{n}&=\frac {a^{2} \left (2 x^{2}+\left (n^{2}+n -4\right ) x -\left (n -1\right ) \left (n +2\right )\right ) x^{-\frac {3 n +2}{n}}}{n \left (n +2\right )} \end{align*}

Maple
ode:=y(x)*diff(y(x),x)-a/n*((n+4)/(n+2)*x-2)*x^(-(2*n+1)/n)*y(x) = a^2/n/(n+2)*(2*x^2+(n^2+n-4)*x-(n-1)*(n+2))*x^(-(3*n+2)/n); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]-a/n*((n+4)/(n+2)*x-2)*x^(-(2*n+1)/n)*y[x]==a^2/(n*(n+2))*(2*x^2+(n^2+n-4)*x-(n-1)*(n+2))*x^(-(3*n+2)/n); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a**2*x**((-3*n - 2)/n)*(2*x**2 + x*(n**2 + n - 4) - (n - 1)*(n + 2))/(n*(n + 2)) - a*x**((-2*n - 1)/n)*(x*(n + 4)/(n + 2) - 2)*y(x)/n + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out