Internal
problem
ID
[12398]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.3-2.
Problem
number
:
64
Date
solved
:
Monday, March 31, 2025 at 05:29:31 AM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class A`]]
ode:=y(x)*diff(y(x),x)-a/n*((n+4)/(n+2)*x-2)*x^(-(2*n+1)/n)*y(x) = a^2/n/(n+2)*(2*x^2+(n^2+n-4)*x-(n-1)*(n+2))*x^(-(3*n+2)/n); dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],x]-a/n*((n+4)/(n+2)*x-2)*x^(-(2*n+1)/n)*y[x]==a^2/(n*(n+2))*(2*x^2+(n^2+n-4)*x-(n-1)*(n+2))*x^(-(3*n+2)/n); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(-a**2*x**((-3*n - 2)/n)*(2*x**2 + x*(n**2 + n - 4) - (n - 1)*(n + 2))/(n*(n + 2)) - a*x**((-2*n - 1)/n)*(x*(n + 4)/(n + 2) - 2)*y(x)/n + y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out