61.24.60 problem 60

Internal problem ID [12394]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 60
Date solved : Monday, March 31, 2025 at 05:28:44 AM
CAS classification : [[_Abel, `2nd type`, `class A`]]

\begin{align*} y y^{\prime }-\left (\left (n +1\right ) x -a n \right ) x^{n -1} \left (x -a \right )^{-n -2} y&=n \,x^{2 n} \left (x -a \right )^{-2 n -3} \end{align*}

Maple
ode:=y(x)*diff(y(x),x)-((n+1)*x-a*n)*x^(n-1)*(x-a)^(-n-2)*y(x) = n*x^(2*n)*(x-a)^(-2*n-3); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]-((n+1)*x-a*n)*x^(n-1)*(x-a)^(-n-2)*y[x]==n*x^(2*n)*(x-a)^(-2*n-3); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-n*x**(2*n)*(-a + x)**(-2*n - 3) - x**(n - 1)*(-a + x)**(-n - 2)*(-a*n + x*(n + 1))*y(x) + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out