Internal
problem
ID
[12348]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.3-2.
Problem
number
:
14
Date
solved
:
Monday, March 31, 2025 at 05:14:05 AM
CAS
classification
:
[[_Abel, `2nd type`, `class A`]]
ode:=y(x)*diff(y(x),x) = (a*(n-1)*x+b*(2*lambda+n))*x^(lambda-1)*(a*x+b)^(-lambda-2)*y(x)-(a*n*x+b*(lambda+n))*x^(2*lambda-1)*(a*x+b)^(-2*lambda-3); dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],x]==(a*(n-1)*x+b*(2*\[Lambda]+n))*x^(\[Lambda]-1)*(a*x+b)^(-\[Lambda]-2)*y[x]-(a*n*x+b*(\[Lambda]+n))*x^(2*\[Lambda]-1)*(a*x+b)^(-2*\[Lambda]-3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(-x**(lambda_ - 1)*(a*x + b)**(-lambda_ - 2)*(a*x*(n - 1) + b*(2*lambda_ + n))*y(x) + x**(2*lambda_ - 1)*(a*x + b)**(-2*lambda_ - 3)*(a*n*x + b*(lambda_ + n)) + y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out