61.23.1 problem 1

Internal problem ID [12323]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2.
Problem number : 1
Date solved : Monday, March 31, 2025 at 05:10:03 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y y^{\prime }&=\left (a x +b \right ) y+1 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 215
ode:=y(x)*diff(y(x),x) = (a*x+b)*y(x)+1; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {-\left (-\operatorname {AiryBi}\left (-\frac {\left (-2 y a +\left (a x +b \right )^{2}\right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}}}\right ) c_1 +\operatorname {AiryAi}\left (-\frac {\left (-2 y a +\left (a x +b \right )^{2}\right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}}}\right )\right ) \left (-a^{2}\right )^{{1}/{3}} \left (a x +b \right ) 2^{{1}/{3}}+2 a \left (\operatorname {AiryBi}\left (1, -\frac {\left (-2 y a +\left (a x +b \right )^{2}\right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}}}\right ) c_1 -\operatorname {AiryAi}\left (1, -\frac {\left (-2 y a +\left (a x +b \right )^{2}\right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}}}\right )\right )}{2^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} \left (a x +b \right ) \operatorname {AiryBi}\left (-\frac {\left (-2 y a +\left (a x +b \right )^{2}\right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}}}\right )+2 \operatorname {AiryBi}\left (1, -\frac {\left (-2 y a +\left (a x +b \right )^{2}\right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}}}\right ) a} = 0 \]
Mathematica. Time used: 0.539 (sec). Leaf size: 161
ode=y[x]*D[y[x],x]==(a*x+b)*y[x]+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {\sqrt [3]{2} (a x+b) \operatorname {AiryAi}\left (\frac {(b+a x)^2-2 a y(x)}{2 \sqrt [3]{2} a^{2/3}}\right )-2 \sqrt [3]{a} \operatorname {AiryAiPrime}\left (\frac {(b+a x)^2-2 a y(x)}{2 \sqrt [3]{2} a^{2/3}}\right )}{\sqrt [3]{2} (a x+b) \operatorname {AiryBi}\left (\frac {(b+a x)^2-2 a y(x)}{2 \sqrt [3]{2} a^{2/3}}\right )-2 \sqrt [3]{a} \operatorname {AiryBiPrime}\left (\frac {(b+a x)^2-2 a y(x)}{2 \sqrt [3]{2} a^{2/3}}\right )}+c_1=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq((-a*x - b)*y(x) + y(x)*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*x - b + Derivative(y(x), x) - 1/y(x) cannot be solved by the factorable group method