61.22.74 problem 74

Internal problem ID [12320]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.1-2. Solvable equations and their solutions
Problem number : 74
Date solved : Monday, March 31, 2025 at 05:09:47 AM
CAS classification : [[_Abel, `2nd type`, `class A`]]

\begin{align*} y y^{\prime }-y&=a^{2} \lambda \,{\mathrm e}^{2 \lambda x}+a \lambda x \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\lambda x} \end{align*}

Maple
ode:=y(x)*diff(y(x),x)-y(x) = a^2*lambda*exp(2*lambda*x)+a*lambda*x*exp(lambda*x)+b*exp(lambda*x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]-y[x]==a^2*\[Lambda]*Exp[2*\[Lambda]*x]+a*\[Lambda]*x*Exp[\[Lambda]*x]+b*Exp[\[Lambda]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(-a**2*lambda_*exp(2*lambda_*x) - a*lambda_*x*exp(lambda_*x) - b*exp(lambda_*x) + y(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out