61.22.42 problem 42

Internal problem ID [12288]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.1-2. Solvable equations and their solutions
Problem number : 42
Date solved : Monday, March 31, 2025 at 05:03:08 AM
CAS classification : [[_Abel, `2nd type`, `class B`]]

\begin{align*} y y^{\prime }-y&=\frac {9 x}{32}+\frac {15 \sqrt {b^{2}+x^{2}}}{32}+\frac {3 b^{2}}{64 \sqrt {b^{2}+x^{2}}} \end{align*}

Maple
ode:=y(x)*diff(y(x),x)-y(x) = 9/32*x+15/32*(b^2+x^2)^(1/2)+3/64*b^2/(b^2+x^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]-y[x]==9/32*x+15/32*Sqrt[x^2+b^2]+3*b^2/(64*Sqrt[x^2+b^2]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-3*b**2/(64*sqrt(b**2 + x**2)) - 9*x/32 - 15*sqrt(b**2 + x**2)/32 + y(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out