Internal
problem
ID
[12231]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-2.
Equations
containing
arbitrary
functions
and
their
derivatives.
Problem
number
:
41
Date
solved
:
Monday, March 31, 2025 at 04:40:02 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = f(x)*y(x)^2+diff(g(x),x)*y(x)+a*f(x)*exp(2*g(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==f[x]*y[x]^2+D[ g[x],x]*y[x]+a*f[x]*Exp[2*g[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") f = Function("f") g = Function("g") ode = Eq(-a*f(x)*exp(2*g(x)) - f(x)*y(x)**2 - y(x)*Derivative(g(x), x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*f(x)*exp(2*g(x)) - f(x)*y(x)**2 - y(x)*Derivative(g(x), x) + Derivative(y(x), x) cannot be solved by the lie group method