61.14.4 problem 4
Internal
problem
ID
[12158]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.7-1.
Equations
containing
arcsine.
Problem
number
:
4
Date
solved
:
Sunday, March 30, 2025 at 11:23:43 PM
CAS
classification
:
[_Riccati]
\begin{align*} y^{\prime }&=\lambda \arcsin \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arcsin \left (x \right )^{n} \end{align*}
✓ Maple. Time used: 0.009 (sec). Leaf size: 87
ode:=diff(y(x),x) = lambda*arcsin(x)^n*y(x)^2+a*y(x)+a*b-b^2*lambda*arcsin(x)^n;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {-\int \arcsin \left (x \right )^{n} {\mathrm e}^{-\int \left (2 \arcsin \left (x \right )^{n} \lambda b -a \right )d x}d x b \lambda -c_1 b -{\mathrm e}^{-\int \left (2 \arcsin \left (x \right )^{n} \lambda b -a \right )d x}}{c_1 +\lambda \int \arcsin \left (x \right )^{n} {\mathrm e}^{-\int \left (2 \arcsin \left (x \right )^{n} \lambda b -a \right )d x}d x}
\]
✓ Mathematica. Time used: 1.585 (sec). Leaf size: 250
ode=D[y[x],x]==\[Lambda]*ArcSin[x]^n*y[x]^2+a*y[x]+a*b-b^2*\[Lambda]*ArcSin[x]^n;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\int _1^x\frac {i \exp \left (-\int _1^{K[2]}\left (2 b \lambda \arcsin (K[1])^n-a\right )dK[1]\right ) \left (-b \lambda \arcsin (K[2])^n+\lambda y(x) \arcsin (K[2])^n+a\right )}{a n \lambda (b+y(x))}dK[2]+\int _1^{y(x)}\left (-\int _1^x\left (\frac {i \exp \left (-\int _1^{K[2]}\left (2 b \lambda \arcsin (K[1])^n-a\right )dK[1]\right ) \arcsin (K[2])^n}{a n (b+K[3])}-\frac {i \exp \left (-\int _1^{K[2]}\left (2 b \lambda \arcsin (K[1])^n-a\right )dK[1]\right ) \left (-b \lambda \arcsin (K[2])^n+\lambda K[3] \arcsin (K[2])^n+a\right )}{a n \lambda (b+K[3])^2}\right )dK[2]-\frac {i \exp \left (-\int _1^x\left (2 b \lambda \arcsin (K[1])^n-a\right )dK[1]\right )}{a n \lambda (b+K[3])^2}\right )dK[3]=c_1,y(x)\right ]
\]
✓ Sympy. Time used: 48.158 (sec). Leaf size: 109
from sympy import *
x = symbols("x")
a = symbols("a")
b = symbols("b")
lambda_ = symbols("lambda_")
n = symbols("n")
y = Function("y")
ode = Eq(-a*b - a*y(x) + b**2*lambda_*asin(x)**n - lambda_*y(x)**2*asin(x)**n + Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = \frac {\left (- C_{1} b e^{2 b \lambda _{} \int \operatorname {asin}^{n}{\left (x \right )}\, dx} + b \lambda _{} \left (e^{2 b \lambda _{} \int \operatorname {asin}^{n}{\left (x \right )}\, dx}\right ) \int e^{a x} \left (e^{- 2 b \lambda _{} \int \operatorname {asin}^{n}{\left (x \right )}\, dx}\right ) \operatorname {asin}^{n}{\left (x \right )}\, dx + e^{a x}\right ) e^{- 2 b \lambda _{} \int \operatorname {asin}^{n}{\left (x \right )}\, dx}}{C_{1} - \lambda _{} \int e^{a x} \left (e^{- 2 b \lambda _{} \int \operatorname {asin}^{n}{\left (x \right )}\, dx}\right ) \operatorname {asin}^{n}{\left (x \right )}\, dx}
\]