Internal
problem
ID
[12153]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-5.
Equations
containing
combinations
of
trigonometric
functions.
Problem
number
:
58
Date
solved
:
Sunday, March 30, 2025 at 11:21:39 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2-1/2*lambda^2-3/4*lambda^2*tan(lambda*x)^2+a*cos(lambda*x)^2*sin(lambda*x)^n; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2-1/2*\[Lambda]^2-3/4*\[Lambda]^2*Tan[\[Lambda]*x]^2+a*Cos[\[Lambda]*x]^2*Sin[\[Lambda]*x]^n; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(-a*sin(lambda_*x)**n*cos(lambda_*x)**2 + 3*lambda_**2*tan(lambda_*x)**2/4 + lambda_**2/2 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*sin(lambda_*x)**n*cos(lambda_*x)**2 + 3*lambda_**2*tan(lambda_*x)**2/4 + lambda_**2/2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method