61.13.5 problem 51

Internal problem ID [12146]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number : 51
Date solved : Sunday, March 30, 2025 at 11:17:57 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=\lambda \sin \left (\lambda x \right ) y^{2}+a \,x^{n} \cos \left (\lambda x \right ) y-a \,x^{n} \end{align*}

Maple. Time used: 0.025 (sec). Leaf size: 66
ode:=diff(y(x),x) = lambda*sin(lambda*x)*y(x)^2+a*x^n*cos(lambda*x)*y(x)-a*x^n; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {{\mathrm e}^{\int \left (x^{n} \cos \left (\lambda x \right ) a +2 \lambda \tan \left (\lambda x \right )\right )d x} c_1}{\lambda \int {\mathrm e}^{\int \left (x^{n} \cos \left (\lambda x \right ) a +2 \lambda \tan \left (\lambda x \right )\right )d x} \sin \left (\lambda x \right )d x c_1 -1}+\sec \left (\lambda x \right ) \]
Mathematica
ode=D[y[x],x]==\[Lambda]*Sin[\[Lambda]*x]*y[x]^2+a*x^n*Cos[\[Lambda]*x]*y[x]-a*x^n; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
lambda_ = symbols("lambda_") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*x**n*y(x)*cos(lambda_*x) + a*x**n - lambda_*y(x)**2*sin(lambda_*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out