61.11.6 problem 32

Internal problem ID [12127]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number : 32
Date solved : Sunday, March 30, 2025 at 11:00:49 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+a x \tan \left (b x \right )^{m} y+a \tan \left (b x \right )^{m} \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 85
ode:=diff(y(x),x) = y(x)^2+a*x*tan(b*x)^m*y(x)+a*tan(b*x)^m; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-x \,{\mathrm e}^{\int \frac {a \tan \left (b x \right )^{m} x^{2}-2}{x}d x}-\int {\mathrm e}^{\int \frac {a \tan \left (b x \right )^{m} x^{2}-2}{x}d x}d x +c_1}{\left (-c_1 +\int {\mathrm e}^{\int \frac {a \tan \left (b x \right )^{m} x^{2}-2}{x}d x}d x \right ) x} \]
Mathematica. Time used: 2.654 (sec). Leaf size: 126
ode=D[y[x],x]==y[x]^2+a*x*Tan[b*x]^m*y[x]+a*Tan[b*x]^m; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\exp \left (-\int _1^x-a K[1] \tan ^m(b K[1])dK[1]\right )+x \int _1^x\frac {\exp \left (-\int _1^{K[2]}-a K[1] \tan ^m(b K[1])dK[1]\right )}{K[2]^2}dK[2]+c_1 x}{x^2 \left (\int _1^x\frac {\exp \left (-\int _1^{K[2]}-a K[1] \tan ^m(b K[1])dK[1]\right )}{K[2]^2}dK[2]+c_1\right )} \\ y(x)\to -\frac {1}{x} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
m = symbols("m") 
y = Function("y") 
ode = Eq(-a*x*y(x)*tan(b*x)**m - a*tan(b*x)**m - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out