61.10.12 problem 25

Internal problem ID [12120]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number : 25
Date solved : Sunday, March 30, 2025 at 10:57:32 PM
CAS classification : [_Riccati]

\begin{align*} \left (a \cos \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \cos \left (\mu x \right ) y-d^{2}+c d \cos \left (\mu x \right ) \end{align*}

Maple. Time used: 0.012 (sec). Leaf size: 268
ode:=(a*cos(lambda*x)+b)*diff(y(x),x) = y(x)^2+c*cos(x*mu)*y(x)-d^2+c*d*cos(x*mu); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-d \int \frac {{\mathrm e}^{\frac {c \int \frac {\cos \left (\mu x \right )}{a \cos \left (\lambda x \right )+b}d x \sqrt {a^{2}-b^{2}}\, \lambda -4 d \,\operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {\lambda x}{2}\right )}{\sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, \lambda }}}{a \cos \left (\lambda x \right )+b}d x +d c_1 -{\mathrm e}^{\frac {c \int \frac {\cos \left (\mu x \right )}{a \cos \left (\lambda x \right )+b}d x \sqrt {a^{2}-b^{2}}\, \lambda -4 d \,\operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {\lambda x}{2}\right )}{\sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, \lambda }}}{\int \frac {{\mathrm e}^{\frac {c \int \frac {\cos \left (\mu x \right )}{a \cos \left (\lambda x \right )+b}d x \sqrt {a^{2}-b^{2}}\, \lambda -4 d \,\operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {\lambda x}{2}\right )}{\sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, \lambda }}}{a \cos \left (\lambda x \right )+b}d x -c_1} \]
Mathematica. Time used: 3.763 (sec). Leaf size: 289
ode=(a*Cos[\[Lambda]*x]+b)*D[y[x],x]==y[x]^2+c*Cos[\[Mu]*x]*y[x]-d^2+c*d*Cos[\[Mu]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x\frac {\exp \left (-\int _1^{K[2]}\frac {2 d-c \cos (\mu K[1])}{b+a \cos (\lambda K[1])}dK[1]\right ) (-d+c \cos (\mu K[2])+y(x))}{c \mu (b+a \cos (\lambda K[2])) (d+y(x))}dK[2]+\int _1^{y(x)}\left (-\int _1^x\left (\frac {\exp \left (-\int _1^{K[2]}\frac {2 d-c \cos (\mu K[1])}{b+a \cos (\lambda K[1])}dK[1]\right )}{c \mu (b+a \cos (\lambda K[2])) (d+K[3])}-\frac {\exp \left (-\int _1^{K[2]}\frac {2 d-c \cos (\mu K[1])}{b+a \cos (\lambda K[1])}dK[1]\right ) (-d+c \cos (\mu K[2])+K[3])}{c \mu (b+a \cos (\lambda K[2])) (d+K[3])^2}\right )dK[2]-\frac {\exp \left (-\int _1^x\frac {2 d-c \cos (\mu K[1])}{b+a \cos (\lambda K[1])}dK[1]\right )}{c \mu (d+K[3])^2}\right )dK[3]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
lambda_ = symbols("lambda_") 
mu = symbols("mu") 
y = Function("y") 
ode = Eq(-c*d*cos(mu*x) - c*y(x)*cos(mu*x) + d**2 + (a*cos(lambda_*x) + b)*Derivative(y(x), x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out