61.10.1 problem 14

Internal problem ID [12109]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number : 14
Date solved : Sunday, March 30, 2025 at 10:50:39 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=\alpha y^{2}+\beta +\gamma \cos \left (\lambda x \right ) \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 94
ode:=diff(y(x),x) = alpha*y(x)^2+beta+gamma*cos(lambda*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\lambda \left (c_1 \operatorname {MathieuSPrime}\left (\frac {4 \alpha \beta }{\lambda ^{2}}, -\frac {2 \alpha \gamma }{\lambda ^{2}}, \frac {\lambda x}{2}\right )+\operatorname {MathieuCPrime}\left (\frac {4 \alpha \beta }{\lambda ^{2}}, -\frac {2 \alpha \gamma }{\lambda ^{2}}, \frac {\lambda x}{2}\right )\right )}{2 \alpha \left (c_1 \operatorname {MathieuS}\left (\frac {4 \alpha \beta }{\lambda ^{2}}, -\frac {2 \alpha \gamma }{\lambda ^{2}}, \frac {\lambda x}{2}\right )+\operatorname {MathieuC}\left (\frac {4 \alpha \beta }{\lambda ^{2}}, -\frac {2 \alpha \gamma }{\lambda ^{2}}, \frac {\lambda x}{2}\right )\right )} \]
Mathematica. Time used: 0.261 (sec). Leaf size: 163
ode=D[y[x],x]==\[Alpha]*y[x]^2+\[Beta]+\[Gamma]*Cos[\[Lambda]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\lambda \left (\text {MathieuSPrime}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {\lambda x}{2}\right ]+c_1 \text {MathieuCPrime}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {\lambda x}{2}\right ]\right )}{2 \alpha \left (\text {MathieuS}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {\lambda x}{2}\right ]+c_1 \text {MathieuC}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {\lambda x}{2}\right ]\right )} \\ y(x)\to -\frac {\lambda \text {MathieuCPrime}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {\lambda x}{2}\right ]}{2 \alpha \text {MathieuC}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {\lambda x}{2}\right ]} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
BETA = symbols("BETA") 
Gamma = symbols("Gamma") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(-Alpha*y(x)**2 - BETA - Gamma*cos(lambda_*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -Alpha*y(x)**2 - BETA - Gamma*cos(lambda_*x) + Derivative(y(x), x) cannot be solved by the lie group method