Internal
problem
ID
[12094]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-2
Problem
number
:
22
Date
solved
:
Sunday, March 30, 2025 at 10:40:57 PM
CAS
classification
:
[_Riccati]
ode:=(a*ln(x)+b)*diff(y(x),x) = y(x)^2+c*ln(x)^n*y(x)-lambda^2+lambda*c*ln(x)^n; dsolve(ode,y(x), singsol=all);
ode=(a*Log[x]+b)*D[y[x],x]==y[x]^2+c*(Log[x])^n*y[x]-\[Lambda]^2+\[Lambda]*c*(Log[x])^n; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(-c*lambda_*log(x)**n - c*y(x)*log(x)**n + lambda_**2 + (a*log(x) + b)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out