Internal
problem
ID
[12091]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-2
Problem
number
:
19
Date
solved
:
Sunday, March 30, 2025 at 10:40:41 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=x*diff(y(x),x) = a*x^n*(y(x)+b*ln(x))^2-b; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*x^n*(y[x]+b*Log[x])^2-b; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq(-a*x**n*(b*log(x) + y(x))**2 + b + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*b**2*x**n*log(x)**2 + 2*a*b*x**n*y(x)*log(x) + a*x**n*y(x)**2 - b)/x cannot be solved by the factorable group method