Internal
problem
ID
[12089]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-2
Problem
number
:
17
Date
solved
:
Sunday, March 30, 2025 at 10:39:56 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Riccati]
ode:=x*diff(y(x),x) = (a*y(x)+b*ln(x))^2; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==(a*y[x]+b*Log[x])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x*Derivative(y(x), x) - (a*y(x) + b*log(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)