Internal
problem
ID
[12066]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.4-2.
Equations
with
hyperbolic
tangent
and
cotangent.
Problem
number
:
21
Date
solved
:
Sunday, March 30, 2025 at 10:30:23 PM
CAS
classification
:
[_Riccati]
ode:=(a*tanh(lambda*x)+b)*diff(y(x),x) = y(x)^2+c*tanh(x*mu)*y(x)-d^2+c*d*tanh(x*mu); dsolve(ode,y(x), singsol=all);
ode=(a*Tanh[\[Lambda]*x]+b)*D[y[x],x]==y[x]^2+c*Tanh[\[Mu]*x]*y[x]-d^2+c*d*Tanh[\[Mu]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq(-c*d*tanh(mu*x) - c*y(x)*tanh(mu*x) + d**2 + (a*tanh(lambda_*x) + b)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
PolynomialDivisionFailed : couldnt reduce degree in a polynomial division algorithm when dividing [[], [ANP([mpq(-1,1), mpq(0,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ), ANP([mpq(1,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ)]] by [[ANP([mpq(1,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ)]]. This can happen when its not possible to detect zero in the coefficient domain. The domain of computation is QQ<I>. Zero detection is guaranteed in this coefficient domain. This may indicate a bug in SymPy or the domain is user defined and doesnt implement zero detection properly.