61.5.5 problem 5

Internal problem ID [12050]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number : 5
Date solved : Sunday, March 30, 2025 at 10:21:54 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=\left (a \sinh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}-a \sinh \left (\lambda x \right )^{2}+\lambda -a \end{align*}

Maple. Time used: 0.097 (sec). Leaf size: 104
ode:=diff(y(x),x) = (a*sinh(lambda*x)^2-lambda)*y(x)^2-a*sinh(lambda*x)^2+lambda-a; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 \lambda \int -{\mathrm e}^{\frac {\cosh \left (2 \lambda x \right ) a}{2 \lambda }} \left (a -\lambda \operatorname {csch}\left (\lambda x \right )^{2}\right )d x c_1 \coth \left (\lambda x \right )+2 \,{\mathrm e}^{\frac {\cosh \left (2 \lambda x \right ) a}{2 \lambda }} c_1 \lambda \operatorname {csch}\left (\lambda x \right )^{2}-\coth \left (\lambda x \right )}{2 \lambda \int -{\mathrm e}^{\frac {\cosh \left (2 \lambda x \right ) a}{2 \lambda }} \left (a -\lambda \operatorname {csch}\left (\lambda x \right )^{2}\right )d x c_1 -1} \]
Mathematica. Time used: 16.773 (sec). Leaf size: 211
ode=D[y[x],x]==(a*Sinh[\[Lambda]*x]^2-\[Lambda])*y[x]^2-a*Sinh[\[Lambda]*x]^2+\[Lambda]-a; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\text {csch}^2(\lambda x) \left (c_1 \sinh (2 \lambda x) \int _1^xe^{\frac {a \sinh ^2(\lambda K[1])}{\lambda }} \text {csch}^2(\lambda K[1]) \left (\lambda -a \sinh ^2(\lambda K[1])\right )dK[1]+2 c_1 e^{\frac {a \sinh ^2(\lambda x)}{\lambda }}+\sinh (2 \lambda x)\right )}{2+2 c_1 \int _1^xe^{\frac {a \sinh ^2(\lambda K[1])}{\lambda }} \text {csch}^2(\lambda K[1]) \left (\lambda -a \sinh ^2(\lambda K[1])\right )dK[1]} \\ y(x)\to \frac {1}{2} \text {csch}^2(\lambda x) \left (\frac {2 e^{\frac {a \sinh ^2(\lambda x)}{\lambda }}}{\int _1^xe^{\frac {a \sinh ^2(\lambda K[1])}{\lambda }} \text {csch}^2(\lambda K[1]) \left (\lambda -a \sinh ^2(\lambda K[1])\right )dK[1]}+\sinh (2 \lambda x)\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(a*sinh(lambda_*x)**2 + a - lambda_ - (a*sinh(lambda_*x)**2 - lambda_)*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*y(x)**2*sinh(lambda_*x)**2 + a*sinh(lambda_*x)**2 + a + lambda_*y(x)**2 - lambda_ + Derivative(y(x), x) cannot be solved by the factorable group method