Internal
problem
ID
[12025]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
20
Date
solved
:
Sunday, March 30, 2025 at 10:18:47 PM
CAS
classification
:
[_Riccati]
ode:=(exp(lambda*x)*a+b*exp(x*mu)+c)*diff(y(x),x) = y(x)^2+k*exp(nu*x)*y(x)-m^2+k*m*exp(nu*x); dsolve(ode,y(x), singsol=all);
ode=(a*Exp[\[Lambda]*x]+b*Exp[\[Mu]*x]+c)*D[y[x],x]==y[x]^2+k*Exp[\[Nu]*x]*y[x]-m^2+k*m*Exp[\[Nu]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") lambda_ = symbols("lambda_") m = symbols("m") mu = symbols("mu") nu = symbols("nu") y = Function("y") ode = Eq(-k*m*exp(nu*x) - k*y(x)*exp(nu*x) + m**2 + (a*exp(lambda_*x) + b*exp(mu*x) + c)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out