Internal
problem
ID
[12020]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 10:17:04 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*exp(x*mu)*y(x)^2+a*b*exp(x*(lambda+mu))*y(x)-b*lambda*exp(lambda*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Exp[\[Mu]*x]*y[x]^2+a*b*Exp[(\[Lambda]+\[Mu])*x]*y[x]-b*\[Lambda]*Exp[\[Lambda]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq(-a*b*y(x)*exp(x*(lambda_ + mu)) - a*y(x)**2*exp(mu*x) + b*lambda_*exp(lambda_*x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*b*y(x)*exp(x*(lambda_ + mu)) - a*y(x)**2*exp(mu*x) + b*lambda_*exp(lambda_*x) + Derivative(y(x), x) cannot be solved by the lie group method