61.3.11 problem 11

Internal problem ID [12016]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number : 11
Date solved : Sunday, March 30, 2025 at 10:16:41 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Riccati]

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 96
ode:=diff(y(x),x) = a*exp(lambda*x)*y(x)^2+b*y(x)+c*exp(-lambda*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\left (-\sqrt {\left (b +\lambda \right )^{2} \left (4 a c -b^{2}-2 b \lambda -\lambda ^{2}\right )}\, \tan \left (\frac {\left (\left (b +\lambda \right ) x +c_1 \right ) \sqrt {\left (b +\lambda \right )^{2} \left (4 a c -b^{2}-2 b \lambda -\lambda ^{2}\right )}}{2 \left (b +\lambda \right )^{2}}\right )+\left (b +\lambda \right )^{2}\right ) {\mathrm e}^{-\lambda x}}{2 a \left (b +\lambda \right )} \]
Mathematica. Time used: 0.581 (sec). Leaf size: 188
ode=D[y[x],x]==a*Exp[\[Lambda]*x]*y[x]^2+b*y[x]+c*Exp[-\[Lambda]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {e^{\lambda (-x)} \left (-\sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}+\frac {2}{\frac {1}{\sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}}+c_1 e^{x \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}}}-b-\lambda \right )}{2 a} \\ y(x)\to -\frac {e^{\lambda (-x)} \left (b \left (\sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}+2 \lambda \right )+\lambda \left (\sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}+\lambda \right )-4 a c+b^2\right )}{2 a \sqrt {-4 a c+b^2+2 b \lambda +\lambda ^2}} \\ \end{align*}
Sympy. Time used: 85.257 (sec). Leaf size: 372
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(-a*y(x)**2*exp(lambda_*x) - b*y(x) - c*exp(-lambda_*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\left (4 a c \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}} - b^{2} \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}} - 2 b \lambda _{} \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}} - b - \lambda _{}^{2} \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}} - \lambda _{} + \left (4 a c \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}} - b^{2} \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}} - 2 b \lambda _{} \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}} + b - \lambda _{}^{2} \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}} + \lambda _{}\right ) e^{\frac {\left (- 4 C_{1} a c + C_{1} b^{2} + \lambda _{} \left (2 C_{1} b + C_{1} \lambda _{} + 4 a c x - b^{2} x - 2 b \lambda _{} x - \lambda _{}^{2} x\right )\right ) \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}}}{\lambda _{}}}\right ) e^{- \lambda _{} x}}{2 a \left (1 - e^{\frac {\left (- 4 C_{1} a c + C_{1} b^{2} + \lambda _{} \left (2 C_{1} b + C_{1} \lambda _{} + 4 a c x - b^{2} x - 2 b \lambda _{} x - \lambda _{}^{2} x\right )\right ) \sqrt {\frac {1}{- 4 a c + b^{2} + 2 b \lambda _{} + \lambda _{}^{2}}}}{\lambda _{}}}\right )} \]