Internal
problem
ID
[12001]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
74
Date
solved
:
Sunday, March 30, 2025 at 10:08:14 PM
CAS
classification
:
[_rational, _Riccati]
ode:=x^2*(a*x^n-1)*(diff(y(x),x)+lambda*y(x)^2)+(p*x^n+q)*x*y(x)+r*x^n+s = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(a*x^n-1)*(D[y[x],x]+\[Lambda]*y[x]^2)+(p*x^n+q)*x*y[x]+r*x^n+s==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") n = symbols("n") p = symbols("p") q = symbols("q") r = symbols("r") s = symbols("s") y = Function("y") ode = Eq(r*x**n + s + x**2*(a*x**n - 1)*(lambda_*y(x)**2 + Derivative(y(x), x)) + x*(p*x**n + q)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out