Internal
problem
ID
[11996]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
69
Date
solved
:
Sunday, March 30, 2025 at 10:06:58 PM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Riccati]
ode:=(a*x^2+b*x+e)*(-y(x)+x*diff(y(x),x))-y(x)^2+x^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^2+b*x+e)*(x*D[y[x],x]-y[x])-y[x]^2+x^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") e = symbols("e") y = Function("y") ode = Eq(x**2 + (x*Derivative(y(x), x) - y(x))*(a*x**2 + b*x + e) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out