Internal
problem
ID
[11985]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
58
Date
solved
:
Sunday, March 30, 2025 at 09:54:05 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=(a*x^2+b)*diff(y(x),x)+y(x)^2-2*x*y(x)+(-a+1)*x^2-b = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^2+b)*D[y[x],x]+y[x]^2-2*x*y[x]+(1-a)*x^2-b==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-b + x**2*(1 - a) - 2*x*y(x) + (a*x**2 + b)*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)