61.2.53 problem 53

Internal problem ID [11980]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 53
Date solved : Sunday, March 30, 2025 at 09:31:51 PM
CAS classification : [_rational, _Riccati]

\begin{align*} x^{2} y^{\prime }&=c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 560
ode:=x^2*diff(y(x),x) = c*x^2*y(x)^2+(a*x^n+b)*x*y(x)+alpha*x^(2*n)+beta*x^n+gamma; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\left (\sqrt {b^{2}-4 c \gamma +2 b +1}\, \sqrt {a^{2}-4 \alpha c}+\sqrt {a^{2}-4 \alpha c}\, n +\left (-b +n -1\right ) a +2 c \beta \right ) \operatorname {WhittakerM}\left (-\frac {-2 \sqrt {a^{2}-4 \alpha c}\, n +\left (b -n +1\right ) a -2 c \beta }{2 \sqrt {a^{2}-4 \alpha c}\, n}, \frac {\sqrt {b^{2}-4 c \gamma +2 b +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha c}\, x^{n}}{n}\right )-2 \operatorname {WhittakerW}\left (-\frac {-2 \sqrt {a^{2}-4 \alpha c}\, n +\left (b -n +1\right ) a -2 c \beta }{2 \sqrt {a^{2}-4 \alpha c}\, n}, \frac {\sqrt {b^{2}-4 c \gamma +2 b +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha c}\, x^{n}}{n}\right ) c_1 n \sqrt {a^{2}-4 \alpha c}+\left (\operatorname {WhittakerW}\left (-\frac {\left (b -n +1\right ) a -2 c \beta }{2 \sqrt {a^{2}-4 \alpha c}\, n}, \frac {\sqrt {b^{2}-4 c \gamma +2 b +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha c}\, x^{n}}{n}\right ) c_1 +\operatorname {WhittakerM}\left (-\frac {\left (b -n +1\right ) a -2 c \beta }{2 \sqrt {a^{2}-4 \alpha c}\, n}, \frac {\sqrt {b^{2}-4 c \gamma +2 b +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha c}\, x^{n}}{n}\right )\right ) \left (\left (a \,x^{n}+b -n +1\right ) \sqrt {a^{2}-4 \alpha c}+\left (a^{2}-4 \alpha c \right ) x^{n}+\left (b -n +1\right ) a -2 c \beta \right )}{2 \sqrt {a^{2}-4 \alpha c}\, \left (\operatorname {WhittakerW}\left (-\frac {\left (b -n +1\right ) a -2 c \beta }{2 \sqrt {a^{2}-4 \alpha c}\, n}, \frac {\sqrt {b^{2}-4 c \gamma +2 b +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha c}\, x^{n}}{n}\right ) c_1 +\operatorname {WhittakerM}\left (-\frac {\left (b -n +1\right ) a -2 c \beta }{2 \sqrt {a^{2}-4 \alpha c}\, n}, \frac {\sqrt {b^{2}-4 c \gamma +2 b +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha c}\, x^{n}}{n}\right )\right ) c x} \]
Mathematica. Time used: 2.182 (sec). Leaf size: 2380
ode=x^2*D[y[x],x]==c*x^2*y[x]^2+(a*x^n+b)*x*y[x]+\[Alpha]*x^(2*n)+\[Beta]*x^n+\[Gamma]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
BETA = symbols("BETA") 
Gamma = symbols("Gamma") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-Alpha*x**(2*n) - BETA*x**n - Gamma - c*x**2*y(x)**2 + x**2*Derivative(y(x), x) - x*(a*x**n + b)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (Alpha*x**(2*n) + BETA*x**n + Gamma + c*x**2*y(x)**2 + x*(a*x**n + b)*y(x))/x**2 cannot be solved by the factorable group method