61.2.27 problem 27

Internal problem ID [11954]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 27
Date solved : Sunday, March 30, 2025 at 09:27:39 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+\left (\alpha x +\beta \right ) y+a \,x^{2}+b x +c \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 973
ode:=diff(y(x),x) = y(x)^2+(alpha*x+beta)*y(x)+a*x^2+b*x+c; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 2.446 (sec). Leaf size: 1640
ode=D[y[x],x]==y[x]^2+(\[Alpha]*x+\[Beta])*y[x]+a*x^2+b*x+c; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
BETA = symbols("BETA") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a*x**2 - b*x - c - (Alpha*x + BETA)*y(x) - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -Alpha*x*y(x) - BETA*y(x) - a*x**2 - b*x - c - y(x)**2 + Derivative(y(x), x) cannot be solved by the factorable group method