Internal
problem
ID
[11954]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
27
Date
solved
:
Sunday, March 30, 2025 at 09:27:39 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+(alpha*x+beta)*y(x)+a*x^2+b*x+c; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+(\[Alpha]*x+\[Beta])*y[x]+a*x^2+b*x+c; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(-a*x**2 - b*x - c - (Alpha*x + BETA)*y(x) - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -Alpha*x*y(x) - BETA*y(x) - a*x**2 - b*x - c - y(x)**2 + Derivative(y(x), x) cannot be solved by the factorable group method